Estimation of Regression Coeecients Subject to Exact Linear Restrictions When Some Observations Are Missing and Balanced Loss Function Is Used

نویسنده

  • H Toutenburg
چکیده

This article considers a linear regression model when a set of exact linear restrictions binding the coeecients is available and some observations on the study variable are missing. Estimators for the vectors of regression coeecients are presented and their superiority properties with respect to the criteria of the variance covariance matrix and the risk under balanced loss functions are analyzed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Regression Coefficients Subject to Exact Linear Restrictions when some Observations are Missing and Balanced Loss Function is Used

This article considers a linear regression model when a set of exact lin ear restrictions binding the coe cients is available and some observations on the study variable are missing Estimators for the vectors of regression coe cients are presented and their superiority properties with respect to the criteria of the variance covariance matrix and the risk under balanced loss functions are analyzed

متن کامل

Diagnostic Measures in Ridge Regression Model with AR(1) Errors under the Stochastic Linear Restrictions

Outliers and influential observations have important effects on the regression analysis. The goal of this paper is to extend the mean-shift model for detecting outliers in case of ridge regression model in the presence of stochastic linear restrictions when the error terms follow by an autoregressive AR(1) process. Furthermore, extensions of measures for diagnosing influential observations are ...

متن کامل

Estimation of Regression Models with Equi-correlated Responses When Some Observations on the Response Variable Are Missing

The present article deals with the problem of estimation of parameters in a linear regression model when some data on response variable is missing and the responses are equicorrelated. The ordinary least squares and optimal homogeneous predictors are employed to nd the imputed values of missing observations. Their eeciency properties are analyzed using the small disturbances asymptotic theory. ...

متن کامل

Detection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions

The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...

متن کامل

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999